
6. Thus, in the present article methods of solution have been given for the system (6)- 
(7) which enable one to find temperature fields and fluxes. 

With the aid of these methods, approximation formulas have been found for the main char- 
acteristics of a thermoelement: the heat flux and the internal resistance. 

It has been shown that in the previously proposed formulas for the heat flux a quadratic 
(in the Thomson effect) term is missing, and in the resistance a linear (in the current term) 
is also missing. The estimates show chac these effects may result in the deviation of the 
volt-- ampere characteristics from linear of several percent. 

NOTATION 

T, y, u, temperatures; q, Q, | heat fluxes; x, $, q, coordinates; ~, A, thermal con- 
ductivities; 0, Y, resistivities; ~, coefficient of thermo-emf; T, 8, Thomson coefficients; 
L, length; S, cross section; J, current density; I, total current; E, electric field inten- 
sity; W, power; V, voltage. 
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APPLICATION OF INFINITE SYSTEMS TO THE SOLUTION OF 

BOUNDARY-VALUE PROBLEMS OF STEADY THERMAL CONDUCTION 

IN NONUNIFORM MEDIA 

Yu. I. Malov and L. K. Martinson UDC 536.24 

A method of calculating the temperature field in nonuniform media is described. Ex- 
amples of the calculation of the temperature distribution for an exponential varia- 
tion of the thermal conductivity of the medium and also in a multilayer structure 
are presented. 

In the rectangular region ~{0 ~ x ~ l, 0 ~ y ~i} we will consider the boundary-value 
problem of steady thermal conduction [i] 

0 [h(x) Ou ] 02u (1) 
ox  7 x  + h (x) - -  - -  q~u = - -  f (x, y ) ,  Og 2 

U------O on 0~, (2) 
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where h(x) > 0 is the thermal conductivity, f(x, y) > 0 is the density of sources at the 
point M(x, y), and qa = const is the coefficient of volume absorption of heat. 

We will represent the solution u(x, y) of Eq. (i) which satisfies the boundary condition 
(2) for y = 0 and y ~ i in the form 

"u (x, g) = 2 vs (x) sins~g, (3) 

in  which  t h e  f u n c t i o n  Vs(X) i s  found f rom t h e  s e l f - c o n j u g a t e  s e c o n d - o r d e r  d i f f e r e n t i a l  equa -  
t i o n  

d [h(x) dvs ] _(s~)~ h(x) v~(x)--q%(x) = --L(x), (4) 
dx dx J 

1 

[~ (x) = 2 .[ f (x, ~) sin s~d~. 
0 

According to Eq. (2), the solution Vs(X) of Eq. 

v 8 (0) = v~ (l) = O. 

We will seek the solution Vs(X) of the boundary-value problem (4) 
of continuous functions C(O, l) in the following form: 

rain 

(4) must satisfy the conditions 

(5) 

and (5) in the class 

co 

vs(x ) = ~I~ a~ sin (6) 
tez~x 

k=l 

Expanding the functions h(x) and fs(X) in the range 0 < x < I in Fourier series, we ob- 

(7) E k~x h (x) = Oo ~k cos , 
2 '  k=l l 

(8)  
oo 

f, (x) = E v~ sin k~x 
l ' 

k = l  

where 

j" kzt~ 2 h (~) cos - -  d~, 
t~h= l "  l " 

0 
l 2 ! k n ~  d~. 

v ~ =  ~ ,  [8(~)sin l 
0 

Since the function Vs(X) C(0,61) and satisfies condition (5), it follows from expansion 

(6) that the series 

E ka k~x a~ - 5 -  cos z 
k ~ l  

converges and 

E k~ k~x av8 _ a~ cos 
ax l 

We will introduce the auxiliary functions 

O(x)=h(x) dvs , tlr(x)-~h(x ) vs(x ). (9) 
dx 

Assuming that for h(x), Vs(X), and dVs/dX, belonging to the space La(O, l) of functions inte- 
grable with a square, there is a general equation of closure [2], we will write the expan- 

sions ~(x) and ~(x) in Fourier series: 
k~X 

r  ~hcos l 
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Then for the coefficients %k and '~k using ~he rule of muls of Fourier series we 
can write the equations [2] 

/ = l  

k = O ,  1, ~ 

k =  1 , 2 ,  . . .  

( l l )  

rain 

Using Eq. (9) and substituting the expansions (6), (7), and (i0) into Eq. (4), we ob- 

kn 

l 

Finally, in view of Eq. (iI)~ relation (12) is transformed to the following infinite 
system of linear algebraic equations of the second kind with respect to the required c~ef- 
ficients: 

q-a k -~ a~ ' a~ " " -  (O~_j-- ~k+j) "~ (13)  

/:i i = i  

where s occurs in the equations of this system as a parameter. In addition, for the Fourier 
coefficients ~n of the function h~x) in (13) we must assume that #n=#_n. 

It will be shown below that the infinite system (13) can be transformed in such a way 
that its matrix operator in the class of functions h(x) considered is Fredholm. In this way 
we will establish that the solvability of the infinite system~ and, consequently, the solution of 
the initial boundary-value problem (i) and (2), in accordance with expansions (3) and (6), 
can be represented in the form 

u(x, y)= 2 ~ a~sin kmr sinsny. ! 
s : l  k = l  

Denoting the matrix elements of the infinite system (13) by Akj, 

Ahi -- (eh_j § eh+j) - s ~" (O~_j-- ~h+j) , 

we t r a n s f o r m  t h i s  s y s t e m  t o  t h e  f o r m  

/ =  1 

w h e r e  mq = q~ + Akk and  m k = O(k  ~) a s  k § ~ .  

We w i l l  i n t r o d u c e  t h e  n o t a t i o n  

after which system (15) and, 

( 1 4 )  

a ~. - (15) f 
(O k 

Bh _ xk , PkJ" = (~h_j : -  6k+j), 
(o k 

2S2 
Q ~  = _ _  (~% _~ : - -  ~,~ ,~. 

2(o h 
o f  c o u r s e ,  t h e  i n i t i a l  i n f i n i t e  s y s t e m  (13)  t a k e  t h e  f o r m  

a~ = 2 Rk i  aS. = B~ k 1, 2, 
i=l  

R ~ j = / P k j  - ! -Qkj  for k ~ j  

tO for ~ = ]. 

(16) 
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We will investigate the possibility that a solution of the infinite system (16) exists 
and we will obtain it by the reduction method. 

We will first show that for the matrix elements Pkj the following estimate holds: 

In fact 

2 IPkJlz < ~176 (17) 
k,/=l 

Since 

we have 

k,]=l k=l i=l 

~ k--1 

fi [~k ~1 "2 ~ const [(k -- ]) ~h jl~-~const. 
]--1 / = 1  m=--~ 

[rn~mt 

ao r162 

j = l  ]=1  r n : k q -  1 

�9 ]Phil 2 ~ const ~ 1 [me,f ' .  (18) 
k.]=l = V --I 

If the function h(x) is continuous in the interval 0 < x < Z, then at least 

~.~ = O ( m  -~) as m--+ oo. 

In this case the series ~ Im~m I 2 converges and, consequently, the binary series (18) also 

converges, i.e., estimate (17) holds. 

Similarly for Qkj t h e  f o l l o w i n g  i n e q u a l i t y  h o l d s :  

~ IQkjl ~ < oo. (19) 

k , ] = l  

But t h e n  u s i n g  (17) a n d  (19) f o r  t h e  m a t r i x  e l e m e n t s  o f  t h e  i n f i n i t e  sy s t em  (16) we have  
t h e  e s t i m a t e  

co o o  co oo 

I kJ]'-:- ~ ]QhJ]~) < ~ 1 7 6  (20) IRhj! ~ ~< (lPhj[ § IQkjt) = ~< const ( ~ P ~ 
k,]=l k,]=l k , i = l  k , ] = l  

I n  a d d i t i o n ,  i t  i s  o b v i o u s  t h a t  t h e  s e q u e n c e  o f  f r e e  t e rm s  o f  s y s t e m  (16) s a t i s f i e s  t h e  c o n -  
d i t i o n  

oo 

2 ]Bk]~ < oo. (21) 
k=! 

The estimate (20) enables us to establish [3] that the matrix of system (16) generates 
inHilbert space ~2 of the sequences {a~}k_ , a completely continuous operator. Since, accord- 
ing to (21), the columns of free terms also belong to 12, in view of the Hilbert theorem for 
an infinite system with completely continuous form we have the following alternative: either 
this system has a unique solution which satisfies the condition 

~J~l ~< ~, 
k = l  

i . e . ,  b e l o n g i n g  t o  Z 2, o r  i n  t h e  u n i f o r m  s y s t e m  c o r r e s p o n d i n g  t o  i t  t h e r e  i s  a s o l u t i o n  which.  
differs from zero in the same space. 

The absence of a nontrivial solution of the homogeneous system is easily established as 
a consequence of the linear independence of the rows of the system matrix, which proves the 
existence and uniqueness of the solution of the homogeneous system (16) for the case when 
h(x)EC (0, l). 
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In this case, to solve the infinite system (16) we will use the method of reduction~ 
which means that approximate values of a~ can be found from the truncated system 

N 

a ~ + ~ R h : a ~ = B k ,  k =  1, ~ . . . .  (22) 
]=1 

Note that when the function h(x) is piecewise smooth, having discontinuities of the first 
kind at certain points xi6(0 , l), i.e., when for the Fourier coefficients only the relation 

~m=O(m -1) as m - + ~  (23) 

is satisfied, the series ~ ]m~ml diverges and there is no upper estimate (18) for the matrix 
m= I 

element P �9 In this case the basis of the reduction of the infinite system (16) requires a k3. 
separate investigation. 

We write the system (16) in the form 

a~ + a~.. 212 % 1 
/~=i i=t 
/#t~ j#k 

We will introduce the following notation: 

X k -  a2k212 a~, Y~ = ( 1 - - - -  

n2l "~ n~sZ ~k_J--@h+j -= B~. (24)  
212 ]" 2~~ 1 a21 

21"- 

212 ) a~, 

k 
Ck: -- (t% _j + ~h+:), 

O3 h 

~~ t%h-:- ~h+: 

2/2 

Taking into account the fact that a~ = X k + Yk, system (24) takes the form 

Xk + Yk + ~ CkjX:+ ~ O~Yj = B~. (25) 

/=; i=l 

We w i l l  c o n s i d e r  two a u x i l i a r y  i n f i n i t e  s y s t e m s  i n  t e r m s  o f  t h e  unknown q u a n t i t i e s  ~k 
and gk : 

2 % + C~,:~ i = ~ B  h, k--= 1, 2 . . . . .  

1=I (26) 

2 ~h+ . Dhj~j=(1--el~)Bh, k =  i, 2 . . . . .  
:=1 

H e r e  i n  t h e  sum X' we h a v e  o m i t t e d  t h e  t e r m  w i t h  j = k ,  and ek  h a v e  b e e n  c h o s e n  so  t h a t  
t h e  s y s t e m s  (26)  a r e  s a t i s f i e d  i d e n t i c a l l y  when a k = (~ rak /212 )a~  and 8 k = [1 -- (~rak/2Z 2)]ask,  
w h e r e  a~: i s  t h e  s o l u t i o n  o f  t h e  i n f i n i t e  s y s t e m  ( 2 4 ) .  

I t  i s  e a s y  t o  show t h a t  when c o n d i t i o n s  (23)  a r e  s a t i s f i e d  t h e  f o l l o w i n g  e s t i m a t e s  h o l d  
f o r  Ckj and Dk j :  

2 ~ 
!Ch: < ~ ,  IDh/~ < c~. 

k,/:l k , / = l  

Whence, when there are no nontrivial solutions of the homogeneous system corresponding to 
(26), there follows the existence and uniqueness of solutions of the inhomogeneous infinite 
system (26) which satisfy the conditions 

' ~  [c%1~< ~ ,  '%~ :~:S-< ~ .  (27) 
#=t t~=I 

In addition, to solve infinite system (26) we will use the method of reduction. 
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Suppose Uk and Bk are, respectively, solutions of the infinite systems of (26). Then 
system (25) can be satisfied by assuming 

Therefore, 

a~ = cr h @- ~k (28) 

is a solution of the infinite system (25), and, consequently, its equivalent (16) also, and 
in view of (27) this solution belongs to the space 12. It should be noted that the solution 
~k of the truncated system (22), corresponding to the infinite system (16), can be repre- 
sented as 

a~ = ~ + p~, 

where ~k and ~k are, respectively, the solutions of the truncated systems 

N 

~ h + ~ ' C k l a i = e k B h ,  k =  1, 2 . . . . .  N, 

N 

~kq- ~ ' D k i ~ j =  (1 - - ek )Bk ,  k =  1, 2 . . . . .  N. 
1=!  

It follows from the applicability of reduction for the infinite systems (26) that 

~h~=k,  ~"+l~k as N ~ o o .  

Then, taking (28) into account, we obtain as N § 

This indicates the possibility of reducing the infinite system (16) for the case of a 
discontinuous piecewise-smooth function h(x). 

Hence, the rigorous solution of the boundary-value problem (i) and (2) can be represent- 
ed in the form of the double trigonometric series (14) with coefficients a~, which satis- 
fies the infinite system (16), where we use the method of reduction to solve this system. 

The form of the solution obtained enables one to calculate the steady temperature field 
in important practical problems with varying thermal conductivity. To carry out the calcula- 
tion using the above scheme it is only necessary to assign the Fourier coefficients of the 
functions h(x) and f(x, y). We will consider examples of these calculations. 

i. Suppose the thermal conductivity varies as follows: 

- -  x A, r - -  const. (29)  h (x) = A exp l ' 

The problem will be solved for the function f(x, y) corresponding to a heat source concen- 
trated at a certain point Mo(xo, yo)E~ 

f (x, y) ~-  f ,  = Q6 (M - -  M0), Q = const > O. 

In this case 

# h = 2 A r l  1 - - ( - - 1 ) k e x p ( - - r )  , k = O ,  I, 2 . . . .  
r ~ @ k2n~l " 

4Q sin knxosin srcy o, k =  l, 2 . . . .  ; s =  1, 2 . . . . .  
v ~ =  l l 

and the solution (14) of the initial boundary-value problem, having the form 

u = 0 (x, y, x0, Yo), 

i s  f u n d a m e n t a l  f o r  an  e x p o n e n t i a l  v a r i a t i o n  o f  t h e  t h e r m a l  c o n d u c t i v i t y  o f  t h e  medium ( 2 9 ) .  
This fundamental solution in view of the linearity of Eq. (i) enables one to write the solu- 
tion with an arbitrary right side: 

1 ~ f G ( x , y ,  xo, Yo)f(xo, Yo)dxodyo �9 ~(~, y )  = --~ 
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J 

Fig. i. 

b 

Temperature field: a) in a nonuniform medium; b) in a multilayer structure. 

Figure la shows isotherms of the temperature field of the fundamental solution for the 

following values of the parameters: A = i, Q = i, r = Inl0; ~ = 2, xo = ~/2. and Yo = ~/2. 

2. The possibility of obtaining a solution of the boundary-value problem (i) and (2) 
using this method in the case of a piecewise-smooth function h(x) enables us to calculate 
the temperature distribution in a multilayer structure when there is no contact resistance 
at the surfaces of the touching layers. 

This formulation of the problem corresponds to assigning h(x) in the form of a piece- 
wise-constant function 

h (x) =- 

where H i = const > 0, i = i, 2, ..., n. 
tion can be calculated from the equation 

H~, O = x o < x < x  ~, 

H2, x1 < % ' ~  x2' ( 3 0 )  

| . . . . . . .  

H n, x~_~ < x < x ~ = l ,  

In this case the Fourier coefficients of this func- 

n 

O k  - -  / s i n - - : - -  - -  s i n  - -  - . ( 3 1 )  
l 

i= l  

Figure ib represents isotherms of the temperature field in a layered structure in which 
the thermal conductivity varies as given by Eq. (30) for n = 5, ~ = 2, xl = 0.I~, x2 = 0.3~, 
x3 = 0.6~, and x, = 0.85~ for HI = 0.8, H2 = 0.2, H3 = i, H, = 0.I, H5 = 0.5, and q = 0. The 
calculation was carried out in this case assuming uniformly distributed thermal sources with 
a constant density f(x, y) ~ i. 

Note that a feature of this method of solution is the possibility of carrying out cal- 
culations in a multilayer structure for any number of layers without complicating the amount 
of computational work, since the number of layers n is only taken into account in Eq. (31) 
for the Fourier coefficients of the piecewise-constant function h(x). 

In conclusion, we note that using this method one can obtain a solution of Eq. (!) with 
mixed boundary conditions on ~. 

In particular, if 

0u 
u = 0 on x = 0 andx =l, --= 0 on y ~ 0 andy = 1, (32) 

0y 

the solution of the boundary-value problem (I), (32) can be represented in the form 

u (x, y) = a~ s i n  - - - -  c o s  s~y  
l 

s=O k=l 
S with expansion coefficients a k which satisfy an infinite system of the for~ (13) in which 

the free terms v~ are calculated from the equation 

ii 

v ~  = [ (~, ~ )  s i n  ~ c o s  s~d~d~ 1. 

O0 

Similarly, one can solve the mixed boundary-value problem with conditions of the first 
kind on y = 0 and y = 1 and of the second kind on the other sections x = 0 and x = ~ of the 
boundary of the region. 
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